Recently completed study with Michael Rocque (Bates College) to be published in *Criminology & Public Policy* that:

- Compares manual scoring method with an automated scoring process
 - Manual = correctional staff enter values for each item on a risk assessment tool by hand
 - Automated = items on the instrument are auto-populated (does not require staff to enter values for these items)
- Compares the reliability (i.e., consistency with which an instrument can be scored across different raters) of the manual and automated processes
 - Examined the impact that inter-rater disagreement had on performance in predicting recidivism
- Estimates the return on investment (ROI) for fully automating the Minnesota Screening Tool Assessing Recidivism Risk (MnSTARR)
Background

- Minnesota DOC began using the MnSTARR in April 2013
 - Study on development of MnSTARR published in *Criminal Justice Policy Review*
 - MnSTARR is strictly a recidivism risk assessment tool
 - Does not assess needs (i.e., identify which interventions would be most appropriate for an offender)
 - But it does include dynamic items that measure whether needs areas have improved or grown worse while in prison
 - Worse = prison misconduct, involvement in gang/security threat group
 - Better = earned educational degree/certificate, completed treatment, get visited in prison
 - Study found MnSTARR significantly outperformed LSI-R in predicting recidivism, so…
 - MnSTARR used to assess recidivism risk
 - LSI-R (and now the LS/CMI) used to assess needs for higher-risk offenders
More on the MnSTARR

• Separate scales/items for male and female offenders
• Assesses risk (over a 4-year follow-up period) for the following types of recidivism
 • Felony
 • Non-violent
 • Non-sexual violent
 • Sexual offending (males only)
 • First-time and repeat sexual offending
• Offenders placed in 1 of 4 risk levels:
 • Very high, High, Medium and Low
• Administered (manually for the most part) twice
 • Once at intake and one more time prior to release
• Used to prioritize offenders for programming (institution and community) and determining level of post-release supervision
The MnSTARR 2.0

- In late 2016, Minnesota will implement the MnSTARR 2.0, which is:
 - A fully-automated recidivism risk assessment tool
 - Implications from Automation
 - More items can be included since they don’t have to be scored by hand
 - Substantially increases assessment capacity
 - Currently, only offenders w/ 6 months or more get MnSTARR
 - Under MnSTARR 2.0, everyone gets assessed for risk
 - Performance—reliability, predictive validity and ROI
 - Staff time saved
 - Average time to score the MnSTARR = 35 minutes
 - Average time to score the MnSTARR 2.0 = 7 seconds
Reliability of Risk/Needs Assessment

- Inter-rater reliability (IRR): consistency between raters in scoring an instrument
 - Very important for manually-scored tools
- In theory, reliability is intertwined with validity
 - An unreliable tool (more inter-rater disagreement) will have lower predictive validity
- Few studies have examined IRR
 - None have examined relationship between IRR and predictive performance
- IRR study on LSI-R (Rocque & Plummer-Beale, 2014)
 - ICC (intraclass correlation coefficient) = 0.65
 - 0.60-0.75 = “good” and above 0.75 is “excellent”
Predictive Performance

• Nearly all of the research has focused on predictive performance
 How well does an instrument predict recidivism?

• Predictive validity has 3 main dimensions
 Predictive discrimination
 • How well does tool separate the recidivists from the non-recidivists?
 • Commonly-used predictive discrimination measures
 • Area under the Curve (AUC): 0.70 and above is adequate
 • Hand’s H-measure

• Predictive accuracy
 • How well does tool accurately classify offenders?
 • Recidivist with a recidivism probability > 50% = true positive
 • Non-recidivist with a recidivism probability < 50% = false positive
 • Accuracy (ACC) is a commonly-used measure

• Calibration
 • How well do predicted probabilities align with observed recidivism outcomes?
 • Root mean squared error (RMSE) and Brier score are some commonly-used measures

• Other measures of predictive performance include:
 • Precision, Recall, F-score, etc.
Prior Research on Predictive Performance

• Most has focused only on predictive discrimination
 • AUC being the most common measured used
 • Performance varies both within (depending on who’s doing the validating) and across tools

• Research has recently focused on impact of classification method on performance
 • Burgess = simple, summative method—most common among widely-used tools
 • Supervised learning algorithms: ranges from types of logistic regression models to “machine learning”
 • Supervised learning algorithms = superior performance over Burgess methodology
Current Study on Reliability and Predictive Validity

- Sample = 3,985 offenders (400 females and 3,585 males) released in 2014 who had been scored on MnSTARR
 - The assessments, scored by prison caseworkers, represent data from a manual process
 - Also scored these same offenders on the MnSTARR using an automated process
- Collected one-year recidivism data to evaluate predictive performance
- Used data from an older sample of offenders released from 2003-2010 to develop and validate models based on a one-year follow-up period
 - Applied these models to the manual and automated assessment data
IRR Results

- Compared the assessments scored manually with those scored by the automated process
 - Results show assessments by prison caseworkers were generally consistent with automated scoring process
 - All ICC values were in “excellent” range (0.75 and above)
 - Male Offenders
 - Average ICC = 0.86
 - High of 0.89 for general recidivism
 - Low of 0.81 for violent recidivism
 - Female Offender
 - Average ICC = 0.90
 - High of 0.94 for felony recidivism
 - Low of 0.81 for violent recidivism
IRR and Predictive Performance

- Despite “excellent” ICC values, manual assessments had inferior performance compared to automated process.

- Used 5 predictive performance measures:
 - AUC, H-measure, ACC, RMSE, and SAR.

- Compared to automated process, manual assessments had worse performance across all 5 performance measures:
 - For both male and female offenders.
 - For each recidivism measure evaluated.

- Example:
 - Average AUC for males:
 - 0.736 for automated and 0.714 for manual.
 - Average AUC for females:
 - 0.759 for automated and 0.730 for manual.
A Closer Look at IRR and Predictive Performance

- All ICC values in “excellent” range, so we arranged male offender data into quintiles:
 - Top 20%: ICC = 0.999
 - 61-80%: ICC = 0.990
 - 41-60%: ICC = 0.966
 - 21-40%: ICC = 0.916
 - Bottom 20%: ICC = 0.615 (similar to Rocque & Plummer-Beale, 2014)
- Little difference in predictive performance when ICC > 0.95
- Performance for manual assessments much worse for bottom 20% (greater disagreement with automated process)
 - Average difference in AUC = .046
 - Average difference in H-measure = .042
 - Similar to difference observed for classification method:
 - AUC/H-measure about .05-.07 higher for supervised learning algorithms compared to Burgess methodology
Could you put that in English/Practical Terms?

- Nearly 8,000 offenders released each year from Minnesota prisons
- Compared to an automated process, using a manual process with an ICC in the “good” range (reduces AUC/H by .04-.05) would result in:
 - More than 1,000 offenders being misclassified
 - False positives: offenders classified as “recidivists” who do not recidivate
 - False negatives: offenders classified as “non-recidivists” who recidivate
ROI for Automation

- **Investment/Cost** = $135,000 to automate the MnSTARR 2.0 (a one-time cost)
- **Return/Benefits** = Minnesota DOC staff time saved from automation
 - Monetized staff time = salary/benefits for prison caseworkers
 - Automation = 12,950 hours saved each year
 - Current assessments plus increased assessment capacity for short-stay offenders
- **Benefit/Cost Estimate after:**
 - Year 1 = $452,108; Ratio = $4.35
 - Year 5 = $2.8 million; Ratio = $21.74
 - Year 15 = $8.4 million; Ratio = $65.23
 - Community employment/job training = $43.26 (Aos and Drake, 2013)
Main Implications from Automation Study

- Inter-rater disagreement can have a major impact on predictive performance
 - Nearly as much as the classification method
- Thresholds for ICC = overly optimistic
 - If ICC between 0.60-0.74 is “good” but drops AUC by .05, it may not be so good after all
- Tentatively propose the following
 - 0.95 and above = excellent
 - 0.85-0.94 = good
 - 0.75-0.84 = adequate
 - Below 0.75 = poor
More Investment in Automation

• Manually-scored tools can still achieve adequate performance
 • But very costly in terms of time/money—ongoing training, ensuring quality, staff time
• Other industries that make risk assessment decisions (financial lending, insurance, healthcare) have shifted to automation
 • More objective
 • More reliable and valid
 • Greater efficiency and cost-effectiveness
Other Considerations

• Automated risk assessment saves time and money, which creates reinvestment opportunities
 • Minnesota DOC = greater focus on case planning
• Automation is not confined to risk assessment
 • Meredith (2014) developed automated needs assessment for Georgia DOC
 • Other options for increasing efficiency/performance of needs assessment process include:
 • Using computer-assisted survey software
 • Using more sophisticated supervised learning/machine learning methods
• Size of ROI will vary
 • To what extent does IT infrastructure need to be upgraded?
 • Economy of scale matters—bigger return for systems with larger populations