Estimating Prison Stays Among Current Prison Populations

NCRP Conference
April 1st, 2015
Introduction

- Traditional estimates of time-served ask,

 “What is the average time an offender serves in prison?”
 - Socially important
 - Natural starting point for studying, e.g., changes over time, differences across states, etc.

- An important extension is:

 “Of all offenders in prison, how many are expected to serve sentences of various length?”
 - Different empirical objective – measuring the # offenders by LOS.
 - Question has been raised in research & by BJS
Introduction

- Knowing LOS is a benefit for corrections administrators
- Promotes effective budget allocation
 - Health care expenditures
 - Programming and treatment dollars
- Promotes effective policies tied to prisoner behavior and prison culture,
 - Staff allocation and use
 - Regimens that maximize prison stability
 - Other policies that address offender needs and promote correctional objectives
Introduction

- Current methods are limited
 - Estimates using stocks & flows describe the average expected stay, but not the distribution.
 - Estimates using release cohorts describe the distribution but,
 - require strong assumptions about the flow of prisoners (in and out) over time.
 - are highly variable,
 - require additional data, and
 - do not provide confidence intervals.
Introduction

- We present a new method for estimating expected LOS of current prison populations
- This method improves on estimates obtained using release cohorts.
 - Uses a survival model
 - Requires fewer assumptions
 - Has advantages in application
Introduction

- We test the robustness of our estimator using NCRP data in 38 states.

- Today’s objectives are to:
 - Describe methods (focusing on intuition)
 - Illustrate results
Release Cohort Method

- The logic behind using release cohorts is straightforward and requires two assumptions,
 1. Admissions and releases occur at a steady rate.
 2. Admission cohorts are equally sized over time.
- Thus, any group with stay S is multiplicative to the observed releases, such that $N^S = S \times R^S$
 - N^S_T is the stock with stay S, and
 - R^S_T is the released offenders with stay S
 - e.g., 200 offenders released after 5 years,
 represent 1,000 (5-year) offenders in the population
Features of the model limit its utility

- Estimated stocks ignore observed information about the current population.
- Estimated stocks diverge from actual stocks when admission rates vary over time.
Features of the model limit its utility (con’t)

- Significant variability among the longest stays.
- No confidence intervals.
- Does a poor job of handling life sentences.

 - Use of life sentences has not been uniform over time, accelerating over the past few decades
 - Increased admissions are largely unobserved in release cohorts.
Survival Method

- We propose using a survival function to estimate expected group membership.

- Advantages:
 - Estimates are applicable to stocks with partially observed information.
 - Confidence intervals are directly estimated
 - Life sentences are naturally handled by the model
 - Estimates are less sensitive to chance variations
 - Admission cohort sizes can be variable

- Still requires steady state assumption for time served
Survival Method

- We offer an intuitive explanation
- Details are available in a paper
Survival Method

Start with a survival function

![Graph showing a survival function over time]
Survival Method

Start with a survival function

![Graph showing the probability of remaining in prison after admission over years. The graph illustrates a decreasing trend, with probabilities ranging from 100% to 0% over a 5-year span.]
Survival Method

Start with a survival function

Length of Stay

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 1 2 3 4 5

Year
Survival Method

Start with a survival function

100% Everyone is Admitted
Survival Method

Start with a survival function

After 1 full year, 50% remain (50% exit)
Survival Method

Start with a survival function

After 2 full years, 25% remain (75% exit)
Survival Method

Start with a survival function

12% remain after 3 full years (88% exit)
Survival Method

Start with a survival function

Eventually no one remains (100% exit)
Of 1,000 people admitted to prison in a given year:

1,000 = 100%

Year

0 1 2 3 4 5

0% 6% 12% 25% 50% 100%
Survival Method

Of 1,000 people admitted to prison in a given year:

1,000 = 500

100% = 50%

0% = 0

Year
Of 1,000 people admitted to prison in a given year:

1,000 = 500 + 250

100% = 500
50% = 250
25% = 125
12% = 60
6% = 30
0% = 0

Year
Survival Method

Of 1,000 people admitted to prison in a given year:

\[1,000 = 500 + 250 + 125 \]

Year 0: 100%
Year 1: 50%
Year 2: 25%
Year 3: 12%
Year 4: 6%
Year 5: 0%
Survival Method

Of 1,000 people admitted to prison in a given year:

\[1,000 = 500 + 250 + 125 + 62 + 63 \]

Year 0: 100%
Year 1: 50%
Year 2: 25%
Year 3: 12%
Year 4: 6%
Year 5: 0%
Of 1,000 people admitted to prison in a given year:

$$1,000 = 500 + 250 + 125 + 62 + 63$$

Year:
- 0% after 0 years
- 50% after 1 year
- 25% after 2 years
- 12% after 3 years
- 6% after 4 years
- 0% after 5 years
So Where Does the Curve Come From?

- Imagine we track admissions starting in 2013
So Where Does the Curve Come From?

- What about admissions starting in 2012?
Survival Method

So Where Does the Curve Come From?

- 2008 Admission Cohort
Survival Method

So Where Does the Curve Come From?
Constructing “Synthetic” Survival Curve

2009 Admission Cohort

Year
Estimated Number of Current Short-Stay Prisoners

Estimated Population

State 1 | State 2 | State 3 | State 4 | State 5 | State 6

Survival Method | Release Cohort Method

Results – Short Stays
Results – Medium Stays

Estimated Number of Current Medium-Stay Prisoners

<table>
<thead>
<tr>
<th>State</th>
<th>Survival Method</th>
<th>Release Cohort Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results – Long Stays

Estimated Number of Current Long-Stay Prisoners

- Estimated Population
- Survival Method
- Release Cohort Method

<table>
<thead>
<tr>
<th>State</th>
<th>Estimated Number of Current Long-Stay Prisoners</th>
</tr>
</thead>
<tbody>
<tr>
<td>State 1</td>
<td>2,000</td>
</tr>
<tr>
<td>State 2</td>
<td>1,000</td>
</tr>
<tr>
<td>State 3</td>
<td>4,000</td>
</tr>
<tr>
<td>State 4</td>
<td>8,000</td>
</tr>
<tr>
<td>State 5</td>
<td>6,000</td>
</tr>
<tr>
<td>State 6</td>
<td>4,000</td>
</tr>
</tbody>
</table>
Results – Long Stays

Distribution of States According to the Estimated Proportion of Long-Stay Prisoners

![Bar chart showing the distribution of states according to the estimated proportion of long-stay prisoners using Survival Method and Release Cohort Method. The x-axis represents the proportion of long-stay prisoners ranging from 0% to 30%, and the y-axis represents the number of states. The chart displays the number of states for each proportion range, with bars for each method overlaid.](chart.png)
Conclusion

- The future is of course uncertain, but...forecasting the future is important

- Enables public administrators to make decisions about the present.
 - foresee budgetary pressures
 - informed decisions about resource allocation.

- With that goal in mind, this paper proposes a new method for estimating inmates by LOS.
Conclusion

- Our method is a general approach & applicable to a wide variety of settings.

- There may be specific circumstances where forecasts are better achieved through other means.
 - e.g., states with determinate sentencing laws
 - perhaps as simple as counting prisoners with known LOS.
 - may require a mixture of methods.

- Our method provides new flexibility in how projections can be achieved.